23 research outputs found

    A Survey of Interaction Techniques and Devices for Large High Resolution Displays

    Get PDF
    Innovations in large high-resolution wall-sized displays have been yielding benefits to visualizations in industry and academia, leading to a rapidly growing increase of their implementations. In scenarios such as these, the displayed visual information tends to be larger than the users field of view, hence the necessity to move away from traditional interaction methods towards more suitable interaction devices and techniques. This paper aspires to explore the state-of-the-art with respect to such technologies for large high-resolution displays

    The IDENTIFY study: the investigation and detection of urological neoplasia in patients referred with suspected urinary tract cancer - a multicentre observational study

    Get PDF
    Objective To evaluate the contemporary prevalence of urinary tract cancer (bladder cancer, upper tract urothelial cancer [UTUC] and renal cancer) in patients referred to secondary care with haematuria, adjusted for established patient risk markers and geographical variation. Patients and Methods This was an international multicentre prospective observational study. We included patients aged ≥16 years, referred to secondary care with suspected urinary tract cancer. Patients with a known or previous urological malignancy were excluded. We estimated the prevalence of bladder cancer, UTUC, renal cancer and prostate cancer; stratified by age, type of haematuria, sex, and smoking. We used a multivariable mixed-effects logistic regression to adjust cancer prevalence for age, type of haematuria, sex, smoking, hospitals, and countries. Results Of the 11 059 patients assessed for eligibility, 10 896 were included from 110 hospitals across 26 countries. The overall adjusted cancer prevalence (n = 2257) was 28.2% (95% confidence interval [CI] 22.3–34.1), bladder cancer (n = 1951) 24.7% (95% CI 19.1–30.2), UTUC (n = 128) 1.14% (95% CI 0.77–1.52), renal cancer (n = 107) 1.05% (95% CI 0.80–1.29), and prostate cancer (n = 124) 1.75% (95% CI 1.32–2.18). The odds ratios for patient risk markers in the model for all cancers were: age 1.04 (95% CI 1.03–1.05; P < 0.001), visible haematuria 3.47 (95% CI 2.90–4.15; P < 0.001), male sex 1.30 (95% CI 1.14–1.50; P < 0.001), and smoking 2.70 (95% CI 2.30–3.18; P < 0.001). Conclusions A better understanding of cancer prevalence across an international population is required to inform clinical guidelines. We are the first to report urinary tract cancer prevalence across an international population in patients referred to secondary care, adjusted for patient risk markers and geographical variation. Bladder cancer was the most prevalent disease. Visible haematuria was the strongest predictor for urinary tract cancer

    Selectivity and validation of HTS identified compounds by hemin agarose affinity chromatography.

    No full text
    <p>(a) verteporfin and (b) tomatine hydrochloride potently disrupt the interaction between ABCB6 and hemin-agarose compared with (c) succinylacetone. (d, e and f) image J analysis of ABCB6 band intensity treated with (d) verteporfin, (e) tomatine hydrochloride and (f) succinylacetone averaged over three independent experiments. Mitochondria isolated from K562 cells expressing ABCB6-Flag or the empty vector were incubated in the presence or absence of increasing concentration of the indicated compound and hemin-agarose and the resulting complex was immunoblotted using a monoclonal antibody to the flag-tag. Results are representative of 3 independent experiments. ‘*’ significantly different from untreated controls. P<0.05. ‘NS’ differences are non-significant compared to untreated control.</p

    SDS-PAGE analysis of purified ABCB6 and selectivity and validation of HTS identified compounds by hemin-agarose affinity chromatography using purified ABCB6.

    No full text
    <p>(a) Purified ABCB6 sample was analyzed by SDS-PAGE. The figure shows coomassie brilliant blue staining of SDS gel (lane legends are 1, protein marker; 2, purified ABCB6-flag 2 µg protein; 3, purified ABCB6-flag 5 µg protein; 4, protein marker; and 5, bovine serum albumin control). b) verteporfin and (c) tomatine hydrochloride potently disrupt the interaction between purified ABCB6 protein and hemin-agarose compared with (d) succinylacetone. Three hundred nanograms of purified ABCB6-flag protein was incubated in the presence or absence of increasing concentration of the indicated compound and hemin-agarose and the resulting complex was immunoblotted using a monoclonal antibody to the flag-tag. Results are representative of three independent experiments.</p

    Topology and homology model of ABCB6 dimer with the docked ligands.

    No full text
    <p>(a) far and (b) close view of docking poses of selected ligands to the human ABCB6 transporter. Coproporphyrinogen III – blue; verteporfin – green; benzethonium chloride– magenta; piperlongumine - light blue; and tomatine hydrochloride - yellow. The Gly426-Val429, and Phe545-Pro555 parts from one ABCB6 monomer were hidden in order to better see the ligands.</p

    Verteporfin and tomatine hydrochloride are ABCB6 transport substrates.

    No full text
    <p>(a) verteporfin and (b) tomatine hydrochloride are transported by transport competent ABCB6 protein (ABCB6) in the presence of ATP which is significantly higher than transport by transport incompetent ABCB6 protein (ABCB6-MT) in the presence of ATP in mitochondria isolated from ABCB6 or ABCB6-MToverexpressing cells. Results are representative of three independent experiments. ‘*’ significantly different from ABCB6-MT and AMP treated ABCB6 expressing mitochondria; P<0.05. ‘**’ significantly different from ABCB6-MT and AMP treated ABCB6 expressing mitochondria; P<0.01. (c) and (d) vanadate sensitive ATPase activity (fold change relative to basal activity) was stimulated by (c) verteporfin and (d) tomatine hydrochloride in mitochondria from cells expressing transport competent ABCB6 protein (ABCB6) relative to mitochondria isolated from transport incompetent ABCB6 protein (ABCB6-MT). Values are means +/− SEM. ‘*’ significantly different from ABCB6-MT cells at each time point; P<0.05.</p
    corecore